Partial Reduction for Linear Systems of Operator Equations with System Matrix in Companion Form
نویسنده
چکیده
In this paper we will consider a partial reduction for nonhomogeneous linear systems of the operator equations with the system matrix in the companion form and with different operators. As a result of this method we will get an equivalent system consisting of the linear operator equations having only one or two variables. Homogeneous part of the equation in one unknown is obtained using generalized characteristic polynomial of the system matrix. We will also look more closely at some properties of the doubly companion matrix. AMS Mathematics Subject Classification (2010): 15A21
منابع مشابه
Total Reduction of Linear Systems of Operator Equations with the System Matrix in the Companion Form
We consider a total reduction of a nonhomogeneous linear system of operator equations with the system matrix in the companion form. Totally reduced system obtained in this manner is completely decoupled, i.e., it is a system with separated variables. We introduce a method for the total reduction, not by a change of basis, but by finding the adjugate matrix of the characteristic matrix of the sy...
متن کاملOn the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کامل